532 research outputs found

    Renormalization group approach to vibrational energy transfer in protein

    Full text link
    Renormalization group method is applied to the study of vibrational energy transfer in protein molecule. An effective Lagrangian and associated equations of motion to describe the resonant energy transfer are analyzed in terms of the first-order perturbative renormalization group theory that has been developed as a unified tool for global asymptotic analysis. After the elimination of singular terms associated with the Fermi resonance, amplitude equations to describe the slow dynamics of vibrational energy transfer are derived, which recover the result obtained by a technique developed in nonlinear optics [S.J. Lade, Y.S. Kivshar, Phys. Lett. A 372 (2008) 1077].Comment: 11 page

    Targeted free energy perturbation

    Full text link
    A generalization of the free energy perturbation identity is derived, and a computational strategy based on this result is presented. A simple example illustrates the efficiency gains that can be achieved with this method.Comment: 8 pages + 1 color figur

    Development of Time- and Energy-Resolved Synchrotron-Radiation-Based Mössbauer Spectroscopy

    Get PDF
    14th International Conference on Synchrotron Radiation Instrumentation (SRI 2021) 28.03.2022 - 01.04.2022 OnlineSynchrotron-radiation based Mössbauer spectroscopy has become a useful technique capable for investigating various Mössbauer isotopes. For a typical experimental setup, the information associated with the pulse height (that is, energy) in an avalanche photodiode (APD) detector has not been used effectively. By using a system for simultaneous measurement system of time and energy associated with the APD signal, a system for the time- and energy-resolved Mössbauer spectroscopy has been developed. In this system, the pulse height information was converted to the time information through an amplitude-to-time converter applied to one of the divided signals from the APD. The corresponding time information was processed separately from another one of the divided signals. Both signals are recorded by a multi-channel scaler in an event-by-event data acquisition process. The velocity information from the Mössbauer transducer was also recorded as a tag for each signal event. Thus, the Mössbauer spectra with any time- and energy-window can be reconstructed after the data collection process. This system can be used for many purposes in time- and energy-resolved Mössbauer spectroscopy, and shows significant promise for use with other fast detectors and for various types of experiments

    N=1 Supersymmetric Product Group Theories in the Coulomb Phase

    Get PDF
    We study the low-energy behavior of N=1 supersymmetric gauge theories with product gauge groups SU(N)^M and M chiral superfields transforming in the fundamental representation of two of the SU(N) factors. These theories are in the Coulomb phase with an unbroken U(1)^(N-1) gauge group. For N >= 3, M >= 3 the theories are chiral. The low-energy gauge kinetic functions can be obtained from hyperelliptic curves which we derive by considering various limits of the theories. We present several consistency checks of the curves including confinement through the addition of mass perturbations and other limits.Comment: 22 pages, LaTeX, minor changes. Eqs. (20) and (42) correcte

    The Coulomb branch of N=1 supersymmetric SU(N_c) x SU(N_c) gauge theories

    Get PDF
    We analyze the low energy behavior of N=1 supersymmetric gauge theories with SU(N_c) x SU(N_c) gauge group and a Landau-Ginzburg type superpotential. These theories contain fundamentals transforming under one of the gauge groups as well as bifundamental matter which transforms as a fundamentals under each. We obtain the parametrization of the gauge coupling on the Coulomb branch in terms of a hyperelliptic curve. The derivation of this curve involves making use of Seiberg's duality for SQCD as well as the classical constraints for N_f=N_c+1 and the quantum modified constraints for N_f=N_c.Comment: 16 pages, no figures, revtex; typos correcte

    Paramagnetic Phase of a Heavy-Fermion Compound, CeFePO, Probed by 57Fe M\"{o}ssbauer Spectroscopy

    Full text link
    57Fe M\"{o}ssbauer spectroscopy was applied to an iron-based layered compound CeFePO. At temperatures from 9.4 to 293 K, no magnetic splitting was observed in the M\"ossbauer spectra of CeFePO indicating a paramagnetic phase of the Fe magnetic sublattice. All the spectra were fitted with a small quadrupole splitting, and the Debye temperature of CeFePO was found to be \sim448 K. The isomer shift at room temperature, 0.32 mm/s, was almost equal to those of LnFeAsO (Ln = La, Ce, Sm). Comparing s-electron density using the isomer shifts and unit cell volumes, it was found that the Fe of CeFePO has a similar valence state to other layered iron-based quaternary oxypnictides except LaFePO

    Antiferromagnetic Order and Superconductivity in Sr4(Mg0.5-xTi0.5+x)2O6Fe2As2 with Electron Doping: 75As-NMR Study

    Full text link
    We report an 75As-NMR study on iron (Fe)-based superconductors with thick perovskitetype blocking layers Sr4(Mg0.5-xTi0.5+x)2O6Fe2As2 with x=0 and 0.2. We have found that antiferromagnetic (AFM) order takes place when x=0, and superconductivity (SC) emerges below Tc=36 K when x=0.2. These results reveal that the Fe-pnictides with thick perovskitetype blocks also undergo an evolution from the AFM order to the SC by doping electron carriers into FeAs planes through the chemical substitution of Ti+4 ions for Mg+2 ions, analogous to the F-substitution in LaFeAsO compound. The reason why the Tc=36 K when x=0.2 being higher than the optimally electron-doped LaFeAsO with Tc=27 K relates to the fact that the local tetrahedron structure of FeAs4 is optimized for the onset of SC.Comment: 4 pages, 3 figures, 1 tabl

    Supersymmetry Breaking in Chern-Simons-matter Theories

    Full text link
    Some of supersymmetric Chern-Simons theories are known to exhibit supersymmetry breaking when the Chern-Simons level is less than a certain number. The mechanism of the supersymmetry breaking is, however, not clear from the field theory viewpoint. In this paper, we discuss vacuum states of N=2{\cal N}=2 pure Chern-Simons theory and N=2{\cal N}=2 Chern-Simons-matter theories of quiver type using related theories in which Chern-Simons terms are replaced with (anti-)fundamental chiral multiplets. In the latter theories, supersymmetry breaking can be shown to occur by examining that the vacuum energy is non-zero.Comment: 17 pages, 3 figures, v2) references adde

    Phases of N=1 USp(2N_c) Gauge Theories with Flavors

    Full text link
    We studied the phase structures of N=1 supersymmetric USp(2N_c) gauge theory with N_f flavors in the fundamental representation as we deformed the N=2 supersymmetric QCD by adding the superpotential for adjoint chiral scalar field. We determined the most general factorization curves for various breaking patterns, for example, the two different breaking patterns of quartic superpotential. We observed all kinds of smooth transitions for quartic superpotential. Finally we discuss the intriguing role of USp(0) in the phase structure and the possible connection with observations made recently in hep-th/0304271 (Aganagic, Intriligator, Vafa and Warner) and in hep-th/0307063 (Cachazo).Comment: 61pp; Improved the presentation, references are added and to appear in PR
    • 

    corecore